
App Organization and History API

Michael Chang

Spring 2023

Full stack topics

(Today) Web app organization

(Thursday) Authentication and users

CSS techniques and mobile styling

Accessibility

Week 10

Frontend frameworks, deployment, advanced techniques, wrap-up

Plan for today

Web app structure

Definition: single page application

Different strategies and their tradeoffs

location and history API

Changing URL without reloading page

Storing data across HTML pages

Note: route ordering

Express checks routes one by one

First added -> first checked

Uses first match

Example

api.post("/binky", ...);

api.use(bodyParser.json());

req.body not available in POST /binky route

api.all("/*", ...); /* handle all requests */

api.get("/", ...);

Second handler never called

Web app structure

How many HTML pages?

Traditional websites: one page per "view"

Pages might have dynamic content filled in by server

Single page application (SPA)

Only one HTML file; elements shown/hidden via JS

Dynamic content via fetch

Popular with frontend frameworks

Modern non-SPAs

Use fetch for dynamic content

Some showing/hiding to respond to events (user) or data (server)

If page sufficiently different, can make a new HTML file

Browser URL bar

Current model

URL shows exact file name the server will return

E.g. http://localhost:1930/social.html

Links point to specific HTML pages

E.g. Part 3

Limitations

No dynamic URLs, sharable links

E.g. http://localhost:1930/profile/mchang

Changing URL -> reload from server

No smooth/fancy transitions, loading bars...

When page is an SPA, no "deep links"

Can't link to parts of app; can't use back button

Multi-step approach

0. Stick to current organization. It works fine.

For informational pages, pointing at HTML files is fine

If only a couple views, no need for deep links

0.5. Use URL hash

Hash part never sent to server; changing won't reload

E.g. http://localhost:1930/social.html#mchang

1. Server maps multiple URLs -> same HTML

Use location in frontend to fetch/display content

2. Use history API to change URL

Change URL without reloading page

Frontend: location

window.location: info about the loaded URL

.href: "http://localhost:1930/index.html?binky=winky#foo"

.protocol: "http:"

.host: "localhost:1930"

.pathname: "/index.html"

.search: "?binky=winky"

.hash: "#foo"

.assign(url)

Navigate to this URL (loaded from server)

.replace(url)

Replace URL (load from server, can't "Back" to current URL)

https://developer.mozilla.org/en-US/docs/Web/API/Location

Backend: sending files

const PUBLIC_PATH = path.join(process.cwd(), "public");

app.get("/profile/:id", (req, res) => {

 res.sendFile("profile.html", { root: PUBLIC_PATH });

});

res.sendFile(path, options)

Send the file as a response

path must be absolute, or options.root must be set

For security, probably best to always use root

Careful: if path is coming from user, could introduce security issues

E.g. "send me the file ../../../secret.txt"

Using root helps, but still should be careful

https://expressjs.com/en/api.html#res.sendFile

Frontend: history API

window.history: interact with browser's URL bar and history

.pushState(state, title, url)

Change URL bar without loading page

No one uses title (pass "")

Can pass "state" that isn't shown in URL

Accessed through history.state

.replaceState(state, title, url)

Replace history entry with new one (no load, can't Back to current page)

.back, .forward, .go

Programmatically move through browser history

https://developer.mozilla.org/en-US/docs/Web/API/History

Frontend: history API

popstate event on window

Fired when user (or program) moves through history (back, forward, etc.)

NOT fired when pushState or replaceState

Example

window.addEventListener("popstate", (event) => {

 console.log(`Location: ${location.pathname}`);

 loadProfile();

});

Saving state across pages

window.sessionStorage

Allows you to save data on one page and read it on another

Or save state while refreshing the page

Reminder: frontend only, backend is stateless

Example

window.sessionStorage.setItem("user", "mchang");

let user = window.sessionStorage.getItem("user");

window.sessionStorage.removeItem("user");

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage

Summary

Today

Assorted things that may be relevant to your project

Before next time

assign3.2 ongoing

Next time: auth and users

Tracking who's logged in, API tokens

Using 3rd-party auth (like Google), Oauth

Security considerations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

