
Node API backends

Michael Chang

Spring 2023

Plan for today

Recap: Node servers in Express

Defining a route, returning JSON

Express middleware

Storing variables about a request

Reading request body

Aside: CORS

Designing clean REST APIs

Aside: directory structure

Stuff we created/defined

api: NodeJS code for defining API routes

public: HTML/CSS/(frontend) JS sent to the browser

lib: Code we provide (both client and server)

Only has the auto-refresh code

server.js: Script that starts the Node server

Aside: directory structure

Stuff common to all Node projects

package.json: Metadata about the project, including dependencies

package-lock.json: Info about the exact packages you've installed for the
project

node_modules: The actual packages you installed

Notes

When sending your project, delete node_modules

When downloading a project, run "npm install" to create node_modules

If something is wrong with npm install, try deleting package-lock.json

Note: frontend/backend separation

Client and server both in JS, but separate

Typically running on separate machines

Client "calls" the server via fetch; can't call a function

Server responds with JSON; can't return arbitrary values (classes, etc.)

Client modules

Client imports modules from public dir

Can include external libraries with <script> tags

Server modules

import Node builtin libs and npm packages

npm to install external libraries

Express middleware

Function that runs before handler for route

app.get("/students/:id", (req, res, next) => {

 res.locals.student = STUDENTS[req.params.id];

 next();

}, (req, res) => { ... });

res.locals: information about this request

(Can't use global variables, because multiple reqs handled in parallel)

next(): call next function in the "chain"

Allows multiple middlewares, then final handler

Don't send response and also call next()

Express middleware

app.use to add middleware

app.use("/students/:id", (req, res, next) => {

 res.locals.student =

 STUDENTS[req.params.id];

 next();

});

Call the middleware function for all requests starting with
/students/:id

Sets res.locals.student

Later endpoints can use it

Reading request body

Need to interpret request body as JSON

Does not happen automatically

body-parser

Maintained by Express devs, but separate npm package

Provides middleware to read request body in various formats

Usage

import bodyParser from "body-parser";

app.use(bodyParser.json());

app.post("/...", (req, res) => {

 let id = req.body.id;

 ...

});

Aside: CORS

Normally can't fetch() from different "origin"

Origin = host and port

E.g. if server running on another machine, or another port on same
machine

fetch("http://localhost:1931/api");

Cause: CORS

Prevents malicious web sites from reading content from your pages/APIs

Solution

import cors from "cors";

app.use(cors());

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

API design tips

Each "thing" in your system has unique URI

E.g. the "mchang" student accessed via /students/mchang

If you need a way to look up students by other fields, use query string

E.g. /students?firstName=Michael

Think of paths like folders

/students

 /students/mchang

 /students/mchang/courses

Not: /student_courses/mchang

API design tips

Use HTTP methods effectively

GET requests should never update data

Use PATCH when updating a resource, and DELETE for deleting

When updating/deleting a resource, use the resource URI

E.g. PATCH /students/mchang

Not: PATCH /students/mchang/update

Use POST for creating, and for misc actions

These may need a suffix, like POST /users/mchang/enroll

API design tips

Use request body to send objects

E.g. when creating or updating a resource

Use HTTP errors to report problems

E.g. 400 means request missing parameter or can't be completed

Include error message in the JSON

Could be human readable, or program readable, or both

Summary

Today

Writing API backends in Node

Before next time

Project proposal

assign3.1

Set up MongoDB (see lecture schedule)

Next time

Persistent data storage (databases)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

