
fetch, async/await, and APIs

Michael Chang

Spring 2023

Plan for today

Background: (server-side) dynamic content

fetch and Promises

Reading external files

async and await

Intro to REST APIs

Accessing APIs using fetch

Using classes to model data from APIs

The problem

We have a web page

Has some content in the HTML

Maybe has some data in the JS files

We want to add more dynamic content

Data from a database or external source

Data about the current user

Data that is constantly changing

The problem

One approach

Have the web server return pre-filled HTML

<p>Logged in as Michael.</p>

Advantages

No work done in the browser

Disadvantages

Data and presentation coupled

Inflexible; can't build e.g. a mobile app or another tool

Can't integrate with other services

Less dynamic (can't get data in background, need to refresh for new
data)

The problem

Another approach

Server returns JS code, which client executes

"document.querySelector(...).textContent = ...;"

Tradeoffs

More dynamic pages

Still embeds page structure in server response

Potential security issues if you're not careful

Still can't integrate external services

APIs

A set of "messages" between programs

In our case, the client (browser) and server

Defines what the client can ask for and do

Defines how the server will respond

Solution

Write (client-side) JS that makes API requests

Server responds with data in some format client understands

Client interprets the data, makes DOM changes

Detour: asynchronous programming

JavaScript is based on asynchronous, or event-driven,
programming

We see this with event listeners and callbacks

Example (pseudocode)

main():

 when Add button clicked, call onAdd

 when Delete button clicked, call onDelete

 when checkbox changes, call onUpdate

Then main returns

Detour: asynchronous programming

Contrast this with synchronous program

Used in some languages/libraries

Example (pseudocode)

main():

 loop forever:

 wait for next event to happen

 if Add button clicked, call onAdd

 if Delete button clicked, call onDelete

 if checkbox changes, call onUpdate

 if Exit button clicked, return

main won't return until program exit

Detour: Promises

Promise: standard interface for handling asynchronous code

Represents something that will happen later (or is happening in
background)

Once finished, the promise "settles"

It can be in one of three states

pending: still waiting on result

fulfilled: has a result

rejected: error occurred

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Detour: Promises

Cannot access result of Promise directly

Need to attach a callback

p.then(onFulfill, onReject)

After p settles, call one of the callbacks according to its state

(If one arg, called for both fulfilled and rejected)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then

fetch API

fetch(url[, options])

Read contents from a URL (which could be relative)

Returns a Promise with the response

response.status

Read the HTTP status code of the response

response.text()

response.json()

Interpret the response body

Returns a Promise with the data

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

fetch example

fetch("myfile.txt").then(response => {

 console.log(response.status);

 response.text().then(text => [

 console.log(text);

 });

});

"Callback hell"

Problem: too many callbacks

Each Promise requires a new callback

Hard to track variables across Promises

Code gets messy

Partial solution: Promise chaining

Avoids the nesting, but still annoying

(We won't talk about this)

Better solution: async and await

https://javascript.info/promise-chaining

async and await

Same code using async/await

const makeRequest = async () => {

 let response = await fetch("myfile.txt");

 console.log(response.status);

 let text = await response.text();

 console.log(text);

};

await

await operator

await <promise>;

Wait for the promise to settle

If fulfilled, return its result

If rejected, throw exception

Only valid inside an async function

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

async function

async

Mark a function as using await

Function returns a Promise of whatever you return

Syntax

const fn = async (args) => { ... };

class Binky {

 async method(args) {

 ...

 }

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

async/await gotchas

Can't use await in non-async function

If you make a callback that uses await, it has to be async too

const main = () => {

 let elem = ...;

 elem.addEventListener("click", async (event) => {

 let res = await fetch(...);

 ...

 });

};

Exception: you can use await on the console

Useful for debugging fetch calls

async/await gotchas

async functions return Promises

Even if you don't use await

const foo = async () => {

 return 42;

};

/* Can mix/match async and Promise.then */

foo().then(num => {

 console.log(num); // -> 42

});

async/await gotchas

If you leave off await, bad things happen

You'll get a Promise, which is probably not what you want

const foo = async () => {

 let response = fetch(...); // No await!!

 let text = response.text();

 // Error: Promise has no text() method

};

Unfortunately, this can be really hard to debug

REST APIs

Representational state transfer

Defines certain rules the API will follow

Resources

Each "thing" we want to send/receive is a "resource"

Identified by a URI (path)

E.g. /courses/CS193X or /users/mchang91

Servers return "representation" of the resource

Clients send (possibly partial) representations to update resources

Statelessness

Server doesn't "remember" clients

I.e. each request includes URI, other info

https://en.wikipedia.org/wiki/Representational_state_transfer

Representing objects

JSON (JavaScript Object Notation)

Based on JS object syntax, but stricter

E.g. keys must be quoted, only primitive types

{

 "id": 1206,

 "courses": [

 { "dept": "CS", "num": "106A" },

 { "dept": "CS", "num": "106A" },

],

 "current": true

}

https://en.wikipedia.org/wiki/JSON

Classes and REST APIs

Classes can model resources

E.g. a Student or User class

Loading (reading) a resource

class Student {

 /* Can’t make constructor async */

 static async load(id) {

 let data = await ...;

 return new Student(data);

 }

}

Classes and REST APIs

Classes can model resources

E.g. a Student or User class

Loading (reading) a resource

class Student {

 constructor(data) {

 /* Copy key/values from data to this */

 Object.assign(this, data);

 /* ... init private instance vars */

 }

}

Summary

Today

Managing data in the client, interacting with servers

Before next time

assign2.1

Next time

Structure of a REST API

Sending data back to the server

Parts of an HTTP request/response

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

