
CSS Odds and Ends

Michael Chang

Spring 2023



Plan for today

Flexbox stuff

Direction, align, and justify

Growing, shrinking, wrapping

Aside: a couple more selectors

Absolute and relative units

Percent, viewport, em, and rem

position

Breaking out of page flow

CSS strategies and best practices



display: flex

Completely changes how element is laid out

The element becomes a "flex container"

Its (direct) children become "flex items"

Lays out flex items in a row or column

Default: row. Use flex-direction: column; to change

https://developer.mozilla.org/en-US/docs/Web/CSS/flex-direction


Flexbox properties

justify-content: layout along the "main axis"

main axis = flex-direction

flex-start, flex-end, center

space-between: equal space between flex items

space-around: also leave space on the ends

align-items: layout along the cross axis

cross axis = opposite of flex-direction

flex-start, flex-end, center

https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content
https://developer.mozilla.org/en-US/docs/Web/CSS/align-items


More flexbox properties

Growing and shrinking

Applied to flex item

flex-grow (default 0): fill remaining space

flex-shrink (default 1): give up space to fit in box

flex-wrap (default nowrap)

Applied to flex container

Wrap to next row/column if necessary

https://developer.mozilla.org/en-US/docs/Web/CSS/flex-grow
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-shrink
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-wrap


Aside: more CSS selectors

> (direct child)

s1 > s2: select s2 if it's a direct child of s1

E.g. useful for flex items inside container

* (universal selector)

select all elements

E.g. .box > *: all direct children of .box

MDN list of selectors and combinators

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors


Units

font-size keywords

xx-small, ..., medium, ..., xxx-large

Scale with browser font

Absolute--won't scale with container font size

em: relative unit

1em = font-size

Useful for margin/padding that needs to scale

rem (root em)

Like em, but uses root font size

Scale with browser text size

MDN <length> units

https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/length


Bigger units

Percentage

Always relative to container (parent) element

100% isn't special (>100% = overflow container)

Viewport

Definition: the area of the browser window that shows page content

vw and vh: 1/100th of viewport width/height



Aside: calc

calc() is a CSS function

Use it in place of a value

Argument is a math expression

Lets you combine units

E.g. width: calc(100vh – 200px);

(But Flexbox may be easier than writing a complex expression)

https://developer.mozilla.org/en-US/docs/Web/CSS/calc


position

position: another way to move elements

Most useful when removing elements from page flow

Takes a keyword

Default: static

Normal flow, cannot move

relative

Start where it would be normally

Use top, bottom, left, right to move

E.g. .elem { position: relative; left: 100px; }

.elem will be 100px right of where it normally would be

https://developer.mozilla.org/en-US/docs/Web/CSS/position


position

absolute

Relative to most recent positioned element

Defaults to root element (top-left of viewport)

Use position: relative on ancestor to control reference point

fixed

Relative to root element (top-left of viewport)

Always same position regardless of scrolling

These two remove element from flow

No space reserved for it



CSS strategies

Many ways to do things

Generally, pick the simplest one

Keep selectors simple

Clear class names that describe semantics

Count on inheritance

Avoid complex dependency on cascade

Watch out for outdated/less useful CSS

E.g. float, vendor prefixes (-moz, -webkit)

Don't just copy/paste CSS

Fall back on core concepts to understand properties

Look up the properties for compat and interactions



Summary

That's it for CSS for now

We'll come back to a few more things throughout

But you can already build some really cool stuff!

Before next time

assign2.1

Next time: APIs

Back to JavaScript

Working with data, interacting with servers


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

