
Styling elements and CSS

Michael Chang

Spring 2023

Plan for today

A few more things about HTML

Styling elements in JavaScript

Intro to styling and CSS

Useful style attributes

Separate CSS files

Block vs. inline

Semantic elements

Elements serve two purposes: semantics and presentation

Semantics: how elements behave

Show images

Click and tab between links and buttons

Presentation: how elements look

Headings bold and large

Links blue and underlined

Can override presentation easily

Harder (and more confusing) to override semantics

Page regions

<header>, <main>, <footer>

<nav>: navigation (top bar, menus)

<article>: content that can stand alone (blog/forum post, news article)

<section>: a section of the page, often with a heading

These don't generally have default presentation

But still important for overall page structure

HTML quirks

Whitespace collapses

Any number of spaces shown as a single space

Some elements take up their own line

We'll get back to this

Escaping symbols with &name; (entities)

& (&), < (<), > (>)

A bunch more, but often can just put the char

Handling of "custom" (bogus) elements and attributes

No warning, just displays them

Don’t count on this

https://developer.mozilla.org/en-US/docs/Glossary/Entity

Styling elements

Element's style prop is an object

Can set properties on the element

These are called CSS properties

Most values are strings

elem.style.backgroundColor = "#8c1515"; /* Cardinal */

/* Reset to "default" value (before we changed it) */

elem.style.display = "";

elem.style.border = "1px solid blue";

We'll learn more about all the different properties next time

Grouping styles

HTML class attribute

Space-separated list of CSS classes

Completely different from JS classes!

Can be used to find/select elems in JS, or to group styles (next time)

classList is a DOMTokenList

Exact type doesn't matter, but see link for methods

if (elem.classList.contains("foo"))

 elem.classList.add("bar");

else

 elem.classList.remove("baz");

https://developer.mozilla.org/en-US/docs/Web/API/DOMTokenList

Styling with CSS

Cascading Style Sheets

Also not a programming language

Per-element style attribute

<p style="color: red">This text is red</p>

Not ideal

Mixes semantics (HTML) and presentation

Can't reuse styles

Can't change styles separately

Separate .css files

<link> separate file with styles

<link rel="stylesheet" href="styles.css">

(in <head>)

.css Syntax:

selector {

property: value;

another-property: another-value;

}

Useful CSS properties

font-family: type face

Specific ("Comic Sans") or generic name ("sans-serif")

font-style: for italics

font-weight: for bold

text-decoration: for underline/overline/strikethrough

color: text color

background-color: background color

text-align: alignment (left, center, right)

border: [length] [style] [color]

CSS colors

A bunch of color names

You should use them ...except IMO some names are strange so maybe
only when they're obvious

rgb(red, green, blue)

From 0 to 255

rgba(red, green, blue, alpha)

Alpha is transparency (from 0 to 1)

Hex color: #rrggbb

You'll probably see this most often

Don't know hex? 00 = none, 80 = half, FF = full

Aside: Stanford colors (who knew)

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Syntax
https://identity.stanford.edu/color.html#digital-color

CSS selectors

type: all type element on page

p { ... }

<p>...</p>

.class: elements with specified class attr

<p class="announcement">...</p>

#id: element with specified id attr

<h2 id="quarter">...</h2>

class vs. id

ids must be unique across the page

Use classes to describe the type of element

Best practice: describe type, not style

E.g. class="highlight", not class="yellow-bg"

Combining CSS selectors

type.class: type elements with class class)

p.announcement { ... }

type#id works, but redundant

.class1.class2 works too

s1 s2: select s2 if descendant of s1

Need not be direct child

header a { ... }

All links inside the header section

s1, s2: select s1 and s2

h1, h2, h3 { ... }

Apply to all level 1, 2, and 3 headings

Cascade and inheritance

Cascade: when multiple selectors apply

Rule of thumb: most specific rule wins

ID > class > type

Longer selector > shorter selector

If tie, last definition > prior ones

Inheritance: many properties apply to descendants already

E.g. font/text properties

No good rule of thumb here

Selector tips

Keep your selectors simple

Often, a class is enough

Don't reuse class name for different meanings

Shorter selectors mean fewer surprises with cascade

Count on inheritance and cascade

Wrap similar element in a container

Don't duplicate classes on sibling elements

Page flow

Recall: some elements take up full width

<p>, <h1>

Others lay out left to right

<a>,

Block vs. inline

block: has width and height, defaults to full width

inline: can't set width or height, can't have block children

Exceptions

: can be sized, but it's inline

display CSS property

Override default flow

Values: block, inline,

none: hide the element completely

inline-block: inline, but has width/height (like)

<div> and

<div>: generic block element

: generic inline element

No semantics or default presentation

Useful for custom styling, layouts

...But don't use when more precise element exists

Summary

Today

CSS, styling elements

Before next time

assign1

assign2 will go out this weekend, due Tue May 2

Next time

Page layout, box model, flexbox

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

