
JavaScript: ADTs and Classes

Michael Chang

Spring 2023

Plan for today

JavaScript data types

Arrays, objects, iteration

Modules

Import and export

Classes

JS Arrays

Array syntax

let arr = [10, 20, 30];

/* Usual indexed for loop */

for (let i = 0; i < arr.length; i++)

 console.log(arr[i]);

/* Loop over elements */

for (let elem of arr)

 console.log(elem);

Caution: for ... of is very different than for ... in

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

JS Array operations

Useful Array operations

arr.push(elem1, elem2, ...)

Add element(s) to an array

arr.indexOf(value)

Get index of value in arr (-1 if not found)

arr.slice(start, end)

Return a subarray (also works for strings)

arr.splice(index, delCount, newElem1, ...)

Insert and/or remove elements at index

Warning: delete arr[i] doesn't work!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

JS Objects

(Plain) Object is a key-value store

Keys must be strings, values can be anything

Syntax

let obj = {

 binky: 42,

 winky: "Hello",

 "key w/ $pecial_chars": []

};

console.log(obj["binky"]);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object

JS Objects

Shorthand syntax

If key is a valid identifier, can use dot

console.log(obj.binky);

obj.dinky = 193;

Best practice: Use dot when possible

JS Object operators

Operators

"key" in obj

Check membership

Note: obj.nonexistentKey -> undefined

if (!obj.nonexistentKey) is common/useful, but be careful of falsy
values

delete obj.key

Remove key/value pair

JS Object functions

Functions

("static" on Object, not methods on individual objects)

Key/value pairs iterated in insertion order

Object.keys(obj)

Array of object keys

Object.values(obj)

Array of object values

Object.entries(obj)

Array of pairs (arrays with length 2) of [key, value]

JS Object iteration

for (let key of Object.keys(obj))

 console.log(key + ": " + obj.key);

for (let [key, value] of Object.entries(obj))

 console.log(key + ": " + value);

for ... in can also iterate Object keys

Recommendation: Avoid for ... in because it's confusing

Note: object references

Arrays and Objects are mutable

Variables and arguments store references

const addElem = (arr) => {

 arr.push(42);

};

let arr = [1, 2, 3];

addElem(arr);

console.log(arr); // [1, 2, 3, 42]

Aside: some useful language features

Destructuring: assign to multiple vars

/* Get first and second elems of arr */

let [first, second] = arr;

/* Variable name matters here! */

let { binky, winky } = obj;

/* Fancier technique, "rest" value */

let [first, ...rest] = arr;

Template strings

for (let [key, value] of Object.entries(obj))

 console.log(`The key ${key} has value ${value}`);

Can contain any JS expression

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Module exports

MDN reference

Module's variables not global

Not automatically accessible from other module

Need to be exported

export

export let exportedVar = ...;

export const exportedFn = () => { ... }

These are "named exports" (see next slide)

export default

export default /* function, class, etc. */;

This is the "default export"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/web/javascript/reference/statements/export

Importing from module

import

import Binky from "./Binky.js";

Gets the default export from Binky.js, names it Binky

import { exportedFn } from "./Binky.js";

Gets a named export (name must match exactly)

import Binky, { exportedVar, exportedFn} from "./Binky.js";

Combined syntax

Paths must start with "./" (or “../” for parent)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

Module strategies

Debugging strategies

Use the debugger to step/inspect variables

Use console.log + right-click "Store as global variable"

Assign to window object

(Of course, don't leave these in your final submissions)

Third-party libraries

Some libraries don't support modules (yet)

Include with <script> tag (without type="module")

Access via global variable (window)

JS class syntax

class Counter {

 constructor(start = 0) {

 this._count = start;

 }

 value() { return this._count; }

 add(n) { this._count += n; }

}

let c = new Counter(10);

c.add(5);

console.log(c.value());

JS classes

MDN class syntax

constructor

Special method name, called by new

Methods

Define in class body

Fields (instance variables)

Accessed through this

Initialize in constructor (or method)

Can add/delete dynamically

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

JS classes

Visibility

Mostly, everything is "public" (like Python)

One convention: prefix with _ for "private" members

Don't access fields/methods starting with _ from outside

Newer: can make truly private fields with #

Recommendation: I haven’t seen this widely used yet, and it has some
caveats and quirks, so I’d avoid for now.

this keyword

Not implicit (like Python, not like C++)

Determined at call time

Huh? We'll figure out what this means next time...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Private_class_fields

Exceptions

try/catch blocks

try {

 ...

 throw new Error("Boom");

 ...

} catch (e) {

 console.log(e.stack);

}

Exceptions

throw <expression>

Can technically throw anything

But probably should throw Errors

new Error(message)

Automatically builds a stack trace

Displays nicely in the console

Can have subclasses of errors

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error

Summary

So far

JavaScript language and syntax

Before next time

assign0 due tonight

assign1 out tomorrow

Next time

Using JS with web pages

Events, interactors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

